Mechanical analysis of bone and its microarchitecture based on in vivo voxel images.
نویسندگان
چکیده
Prevention of osteoporotic fractures requires accurate methods to detect the increase in bone fragility at an early disease stage as well as effective therapies to reduce the risk of bone fractures. Presently the prediction of the patient-specific bone fracture risk is primarily based on bone density, since this is the only parameter which can routinely be measured in vivo. However, these predictions might not always be precise because the fracture risk is also determined by the bone microarchitecture and the bone's loading conditions. The aim of this paper is to introduce and evaluate new methods which could contribute to a better quantification of bone fracture risk. Recently, a new approach, combining computational engineering methods (finite element (FE) method) and 3D high-resolution imaging techniques, has been introduced which can account not only for bone density but also for microarchitecture and loading conditions. High-resolution imaging techniques allow acquisition of 3D images of the bone microarchitecture, whereas FE methods applied to these images allow very precise calculation of the mechanical properties of bone. However, such a detailed FE analysis was not feasible for bone in vivo mainly because the resolution was not sufficient to measure the bone microarchitecture. It is shown here, from preliminary results, that the FE approach based on high-resolution images from a new CT scanner now allows prediction of the mechanical behavior of peripheral bones in vivo. It is expected that, eventually, the FE approach will lead to a better patient-specific fracture risk prediction than earlier methods based on bone density alone. Hence, with this new approach, it might be possible to detect the increase in bone fragility at an early stage of osteoporosis and it might also be possible to evaluate treatments more accurately.
منابع مشابه
Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method
Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملP 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images
Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملAccuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone.
Micro magnetic resonance imaging (µMRI) is an in vivo imaging method that permits 3D quantification of cortical and trabecular bone microstructure. µMR images can also be used for building microstructural finite element (µFE) models to assess bone stiffness, which highly correlates with bone's resistance to fractures. In order for µMRI-based microstructural and µFE analyses to become standard c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technology and health care : official journal of the European Society for Engineering and Medicine
دوره 6 5-6 شماره
صفحات -
تاریخ انتشار 1998